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Energy equipartition starting from high-frequency modes
in the Fermi-Pasta-Ulam b oscillator chain

K. Ullmann,1 A. J. Lichtenberg,1 and G. Corso2
1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720

2Max-Planck Institut fu¨r Physik Komplexer Systeme, 01187 Dresden, Germany
~Received 18 June 1999!

We study the approach to equipartition in the Fermi-Pasta-Ulam oscillator chain with quartic nonlinearity
Fermi-Pasta-Ulam–~b system! starting from generic high-frequency-mode initial conditions. Typically 90% of
the energy is placed in one high-frequency mode, with 10% in adjacent modes. The mode energy is found to
distribute itself into first a number of localized structures which coalesce over time into a single localized
structure, a chaotic breather~CB!. Over longer times the CB is found to break up, with energy transferred to
lower frequency modes which do not have the breather symmetry. A transition with decreasing initial mode
frequency is found such that the CB does not form, as expected from the loss of breather symmetry. The
scaling of CB formation time with energy density,E/N, is found to beTb}(E/N)21, and the scaling of
equipartition time found to beTeq}(E/N)22. The scaling ofTeq can be predicted from an argument which
postulates stochastic diffusion from high-frequency-mode chaotic beat oscillations to the low-frequency
modes. The theory also predicts that a miminum value ofE/N exists below whichTeq should increase more
rapidly with E/N than in the power law range, and this transition has been found numerically.

PACS number~s!: 05.45.2a, 05.70.2a
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I. INTRODUCTION

Coupled oscillator chains form good test systems for
vestigating energy exchange among degrees of freedom@1#.
In particular, the Fermi-Pasta-Ulam~FPU! system, consist-
ing of a set of equal masses coupled to nearest neighbor
nonlinear springs, has been extensively studied@1–13#. Start-
ing with energy initially in a low-frequency mode, Ferm
et al. @2# observed, for low energies, that the oscillators d
not relax to the equipartition state, but displayed recurren
which were later explained in terms of beating among
system modes@1,3#. A theoretical prediction of a threshold t
fast equipartition by mode overlap@4# was subsequently
qualitatively confirmed by studies of energy thresholds
quired to give approximate equipartition among mod
@5–7#. A weaker mechanism that also led to equipartition
a slower time scale has also been studied@8–10#. With initial
energy in a low-frequency mode, it was shown in Ref.@9#
that the resonant interaction of a few low-frequency mo
can lead to local superperiod beat oscillations that are
chastic, transferring energy to high-frequency modes by
fusion. With increasing local energy, there is a transit
from exponentially slow transfer to a time scale that is
versely proportional to a power of the energy density.

It has also been shown that the FPU-b system with quartic
nonlinearity can be approximated, for low-frequency-mo
initial conditions, by the mKDV equation, which admits
soliton solution, that can become unstable with increas
energy@11#. It was further demonstrated that this instabili
roughly coincides with the creation of stochastic layers in
beat oscillations@9#. The close connection between the d
velopment of stochastic layers in beat oscillations and in
bilities in nonlinear structures was also noted for the d
cretized sine-Gordon equation, consisting of pendula coup
by linear springs@14,15#. In Ref. @14#, it was numerically
PRE 611063-651X/2000/61~3!/2471~7!/$15.00
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found that the breakup of a nonlinear structure, starting fr
a high-frequency-mode initial condition, occurred at high
energy~and on a slower time scale! than from energy ini-
tially in a low-frequency mode.

A partial understanding of the increased stability ca
from a series of analyses of breatherlike structures on
crete systems that admitted exact breather solutions@12,16–
18,13#. The high-frequency-mode initial conditions hav
symmetry of neighboring oscillators close to that of the
calized exact breathers. The resulting dynamics consist
two stages. First there is an initial period in which the mo
breaks up into a number of breatherlike structures which c
lesce into one large unstable structure. These structures
been called chaotic breathers~CB! @13#. Since a single large
CB closely approximates a stable breather, the final de
stage, toward equipartition, is slow. This behavior has b
observed in oscillator chains approximating the Kle
Gordon equation with various force laws@16–18#, e.g., the
discretized sine-Gordon equation@18#, and, more relevantly
for this paper, the FPU-b model @12,13#. In these latter
works, the energy was placed in the highest-frequency m
with strict alternation of the amplitudes from one oscillat
to the next. This configuration is stable up to a particu
energy at which a parametric instability occurs, leading
the events described above@12,13#. However, the nonlinear
evolution does not depend on such special initial conditio
but will generically evolve from any high-frequency-mod
initial condition that has predominantly the alternating a
plitude symmetry. One does not know, in this generic sit
tion, whether there exists any true energy threshold
achieve equipartition, but as discussed extensively with
spect to low-frequency-mode initial conditions, the practic
thresholds refer to observable time scales@9,10#. From a
phase space perspective it is intuitively reasonable that f
large number of oscillators and not too low an initial ener
a generic set of initial conditions will lie in a chaotic laye
2471 ©2000 The American Physical Society
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2472 PRE 61K. ULLMANN, A. J. LICHTENBERG, AND G. CORSO
but the chaotic motion can remain close to a regular orbit
very long times@1#.

In this paper we follow the studies of high-frequen
modes in Refs.@12,13#, but for more generic initial condi-
tions. We numerically study the equipartition time sca
confirming the scaling found in Ref.@13# for our more ge-
neric case. Although the central importance of the existe
of CB’s is confirmed, we also emphasize the dual sign
cance of the modes and the beat phenomenon among m
that has been shown to be of central importance to un
standing equipartition with low-frequency initial condition
@9,19#. In particular, we show how these beats can be use
predict the scaling of the time to equipartition as a funct
of energy density.

II. NUMERICAL CALCULATIONS

The Hamiltonian representing the FPU-b chain of N os-
cillators is @1,2#

H5(
i 51

N pi
2

2
1(

i 50

N F1

2
~qi 112qi !

21
b

4
~qi 112qi !

4G . ~1!

We consider the case of strong springs (b.0) and fixed
boundariesq05qN1150. The constantb describing the
strength of the anharmonic potential can be scaled to
positive value. We vary the energy and fixb at the com-
monly used value 0.1 to compare with previous studies.
equations of motion, obtained from the Hamiltonian~1!, are
numerically integrated using a fourth order symplectic in
grator @20# with a fixed integration step. The harmonic pa
of the Hamiltonian can also be put in the form ofN indepen-
dent normal modes via the canonical transformation

Qj5A 2V j

N11 (
i 51

N

sinS p i j

N11Dqi , ~2!

Pj5A 2

V j~N11! (i 51

N

sinS p i j

N11D pi , ~3!

where the frequenciesV j of the normal modes$Qj ,Pj% are

V j52 sinS p j

2N12D . ~4!

The main statistical tools we use to examine the evolut
of the energy distribution are the normalized effective nu
ber of normal modes containing energy,

neff5
1

N
expF2(

j 51

N

ej ln ej G , ~5!

whereej5Ej /( j 51
N Ej are the normalized linear energies

the normal modes@Ej5(1/2)V j (Qj
21Pj

2)#; and the normal-
ized effective number of oscillators containing energy,

nosc5
1

N
expF2(

i 51

N

ei ln ei G , ~6!
r
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where theei are the normalized oscillator energies~in order
to distinguish between normal mode energies and oscill
energies we label the formerej and the latterei in this work!,
which are given by

ei5
1

N H 1

2
pi

21
1

4
@~qi 112qi !

21~qi2qi 21!2#

1
b

8
@~qi 112qi !

41~qi2qi 21!4#J . ~7!

Both the quantitiesneff andnoscvary in the range from 0 to 1
and have small values for energies concentrated, res
tively, in a few modes or oscillators and large values~close
to 1! for energies distributed evenly in the modes or oscil
tors. We can plot these quantities versus time for vario
initial conditions, values ofN, and energy densitiesE/N. For
statistical quantities we also average over several~typically
5–20! different realizations of the initial mode phases to r
duce fluctuations.

We first concentrate our attention on a particular value
N5128, which is sufficiently large to avoid smallN effects,
but small enough for faster calculations. We choose a gen
high-frequency-mode initial condition with the modeg
5120 containing 90% of the energy and the remaining 1
in the adjacent modes. More specifically, we choose a t
system energy ofE550. The primary oscillator symmetry in
this case is alternating amplitudes. As in cases previou
studied@12,13#, in which the energy is placed in the highe
mode, the mode energy rapidly breaks up into a numbe
traveling oscillator-localized nonlinear structures, which th
coalesce over time into a single dominant localized structu
these are the chaotic breathers~CB!. Unlike the results for
the initial conditions used in previous studies, there is
abrupt onset of the CB formation with increasing energ
Rather the time of formation lengthens as the energy is
creased, and probably becomes exponentially long at s
ciently low energy. Following Ref.@13# we trace the evolu-
tion of localized structures in Fig. 1, with the gray sca
quantitatively corresponding to the energy in the localiz
oscillator sites. We concentrate on three times: a time
which there are several CB’s being formed, a somewhat l
time with only one CB and a time when the dominant C
has substantially decayed. Corresponding to the three ti
we show the oscillator energies in Fig. 2, and the mode
ergies in Fig. 3. The sharp breather structures are note
Figs. 2~a! and 2~b!, and the envelope sin(x)/x pattern of
modes~averaged in time!, centered onj 5128, noted in Figs.
3~a! and 3~b!. In Fig. 2~c! the CB has mostly dissipated
while in Fig. 3~c! the energy has spread substantially~but
still well short of equipartition! to low-frequency modes tha
do not have the breather symmetry. To emphasize
breather symmetry we show, in Fig. 4, the mode amplitu
of the principal modes in the breather over a short time c
responding roughly to Figs. 2~b! and 3~b!. Over the short
observation time the breather is concentrated primarily
oscillators 9 and 10. The alternating symmetry is evide
and the amplitudes oscillate at the breather frequencyvb
'2.6(tb'2.4 s). Finally, in Figs. 5 and 6 we give the st
tistical measuresnosc and neff as functions oft, including
again the times in Figs. 2 and 3. We note thatnosc illustrates
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PRE 61 2473ENERGY EQUIPARTITION STARTING FROM HIGH- . . .
the formation and decay of the breathers. In contrast,neff ,
after an initial transient in which the multiple breathers for
hides the dynamics in a slow statistical progression towa
equipartition.

Another question to be considered is the effect of init
conditions. Taking the energy as in Figs. 1–6 and the t
such that the breather has formed at this energy, we exam
various initial conditions in Fig. 7. The breather symmet
which is exact for all energy initially in the modeg5128,
should be completely lost forg564 and below. This loss o
breather symmetry is quite evident in Fig. 7, which indica
that the breather will essentially pick up its full energy for
phases above~approximately! g5105, below which deteri-
orization of the breather occurs. After a rather rapid tran
tion the breather has been essentially eliminated byg585.

We now consider the effect of varying parameters. In F

FIG. 1. Time evolution of the energy distribution in the oscill
tors of the FPU-b oscillator chain withb50.1, E550, N5128
oscillators and initial energy concentrated around the modeg
5120, at times~a! 0,t,104 s, ~b! 105,t,1.13105, and ~c! 2
3105,t,2.13105. Darker regions correspond to oscillators wi
more energy, lighter regions to oscillators with less energy.
,
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8 we illustrate for various values ofE at fixed N5128 and
g5120 the times required for breather formation, for t
breather to approximately maintain its shape, and for
breather to disintegrate. As in Fig. 5,nosc is used to distin-
guish the regimes. We observe that all times decrease
increasingE. The maintenance of the CB and its deterior
tion cannot be easily separated, and may be collectively d
ignated as the time to reach equipartition.

In Fig. 9 we plot lnTeq vs lnN, whereTeq is the time for
nosc to increase tonosc50.7. We see, for fixedg/N515/16
and fixed E/N50.625, that there is a transition, approx
mately atN5128 whereTeq changes from a decreasing fun
tion of N to a constant, independent ofN. For largeN, Teq
has also been found to be independent ofN with low-
frequency-mode initial conditions. However, this scaling c
be obscured by early-in-time transients for some parame
The main scaling is with energy density, which we give

FIG. 2. Energy density distributions among the oscillators fo
FPU-b system with b50.1, E550,N5128 oscillators andg
5120 at times~a! t513104 s, ~b! t513105 s, and ~c! t52
3105 s.

FIG. 3. Energy density distributions in the mode space fo
FPU-b system with b50.1, E550, N5128 oscillators andg
5120 at times~a! t513104 s, ~b! t513105 s, and ~c! t52
3105 s.
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2474 PRE 61K. ULLMANN, A. J. LICHTENBERG, AND G. CORSO
Fig. 10. Plotting lnTeq vs ln(E/N) we find a slope well ap-
proximated by22, i.e., Teq}(E/N)22. In the next section
we present an argument from which this scaling can be e
mated. In Fig. 11 we give the scaling with energy density
the time for CB formationTb , defined as the time fornosc to
fall to nosc50.3. For a single breather to form we require th
Tb&Teq. We find this inequality to hold over the range
E/N values we have investigated, which corresponds
cases in which CB’s form. However, we note that the scal
of the breather formation time is approximatelyTb
}(E/N)21. Thus extrapolations ofTeq andTb to higher en-
ergy predict a crossing, which is a transition to energy d
sities beyond which single breathers will not form. Of cour
the transition is qualitative, in the sense that the definition
the times for formation and destruction of the CB are a
qualitative.

III. ESTIMATING THE TIME TO EQUIPARTITION

In the usual picture of breather stability, the physic
mechanism by which the breather loses stability is that
breather frequency becomes resonant with a linear nor
mode@16–18#. This explanation is not directly applicable t
our problem as the breather frequency is higher than

FIG. 4. Breather phase oscillations for the oscillators at sitei
59 ~dotted line!, i 510 ~solid line!, and i 511 ~dashed line! for b
50.1, E550, g5120, andN5128 oscillators. The oscillatori
510 has frequencyV i52.62 s21.

FIG. 5. Time evolution of the normalized effective number
oscillators (nosc) for b50.1, E550, g5120, andN5128 oscilla-
tors.
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highest normal mode; e.g., in Fig. 4 the CB has a freque
vb52.62 while the highest mode frequency is max(Vj)'2.
However, we know this breather is unstable~a CB!, as it
must have been formed in the chaotic portion of the Ham
tonian phase space in order that is was able to be form
from a few initial modes. Within the usual theory the proce
then becomes quite subtle, as it depends on the relati
small continuous spectrum of the chaos.

Although the dominant structure is the CB, the mo
spectrum, into which the CB can be decomposed, plays
important role. In particular, adjacent modes interact to fo
beats on a slower time scale, which can then interact by
Arnold diffusion mechanism to drive energy to low
frequency modes which lack the breather symmetry. T
transfer of energy from the high-frequency portion of t
spectrum to the low-frequency portion is probably the dom
nant energy transfer mechanism; it has been shown to be
dominant energy transfer mechanism from low-frequen
mode initial conditions to the high-frequency modes@9#. In a
recent work@19# we have found that the scaling with energ
density of the time to reach equipartition can be predic
from that mechanism. The proportionalityTeq~low-to-high!
}(E/N)23 was predicted and confirmed numerically. He
we show that the same formalism can predict the sca
Teq~high-to-low!}(E/N)22, which we have found numeri
cally in Fig. 10. We only quote some results of the theo

FIG. 6. Time evolution of the normalized effective number
modes (neff) for b50.1, E550, g5120, andN5128 oscillators.

FIG. 7. Averages of the normalized effective number of osc
lators (nosc) over eight different initial conditions vs the initial en
ergy mostly in modeg for b50.1, E550, N5128 oscillators and
t553104 s.
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PRE 61 2475ENERGY EQUIPARTITION STARTING FROM HIGH- . . .
The reader is referred to the original papers for a more
tailed treatment@9,19#. Before outlining the steps, we sho
relevant beat oscillations in Fig. 12. The energies in t
adjacent modes~other modes are also involved! are shown,
with a small fast energy interchange associated with the
and a large slow energy interchange at the main beat
quency. The scaling of the main beat frequency with ene
density is found, numerically, to beVB}(E/N)0.8.

To theoretically estimate the scaling of the time to eq
partition we transform the Hamiltonian~1! to action-angle
variables of the normal modes. We first transform to
normal mode variables, using~2! and~3!, and then introduc-
ing the canonical action-angle variables~I, f! through the
transformations Qi5A(2I i /V i)cos(fi) and Pi

5A(2V i I i)sin(fi) we obtain

H5(
j

V j I j1S b

8N18D (
i , j ,k,l

G~ i , j ,k,l !

3AV iV jVkV l I i I j I kI lang~ i jkl !, ~8!

whereang( i jkl )[cos(fi)cos(fj)cos(fk)cos(fl). The coeffi-
cientsG, as calculated in Refs.@3,9# are

FIG. 8. Averages of the normalized effective number of os
lators (nosc) over eight different initial conditions vs time forb
50.1,g5120,N5128 oscillators andE514 ~solid line!, 26 ~long-
dashed line!, 38 ~dashed line!, and 50~dotted line!.

FIG. 9. Natural logarithm of time untilnosc.0.7(Teq) vs natural
logarithm of the total number of oscillators forb50.1, E/N
50.625 andg/N515/16~each point is obtained by averaging ov
20 different initial conditions!.
e-

o

B
e-
y
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e

G~ i , j ,k,l !5(
P

B~ i 1 j 1k1 l !, ~9!

whereP represents the eight permutations of sign ofj, k, and
l and the functionB(x) takes the value 1 if the argument
zero,21 if the argument is62(N11), and zero otherwise
The selection rule~9! follows from the quartic nature of the
coupling. We can estimateVB , by taking a derivative ofH
with respect to an actionI i and then evaluating the nonlinea
term in Eq.~8!. The derivative reduces the sum by one inde
and the selection rule~9! by a second index. If we furthe
consider the sum to run over somedk modes, to be deter
mined, the number of terms in the above sum is then of
order of (dk) @2#. We assume every quartic term in this su
is typically of the same size, i.e., with equal energies for
low-frequency modes,V j I j5E/dk. If we also take the
phases to be random, then the effective number of term
dk, giving the estimate

VB'V j

bE

N
. ~10!

-
FIG. 10. Natural logarithm of time untilnosc.0.7 (Teq) vs natu-

ral logarithm ofE/N for b50.1, g5120, andN5128 oscillators
~each point is obtained by averaging over eight different initial co
ditions!. The linear fit, obtained over all points but the leftmost tw
has a slope ofa522.0460.08.

FIG. 11. Natural logarithm of time untilnosc,0.3 (Tb) vs natu-
ral logarithm ofE/N for b50.1, g5120, andN5128 oscillators
~each point is obtained by averaging over eight different initial co
ditions!. The linear fit has a slope ofa521.1960.12.
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For low-frequency modesV j ~low!5p j /N, but for high-
frequency modes we can approximateV j ~high!52. Note that
the scaling ofVB with E/N is approximately that found nu
merically. The key assumption in the calculation is to
quire, for fast Arnold diffusion@9#, that

VB*dV l , ~11!

wheredV l is the spread of mode frequencies to which e
ergy can be transferred. For transfer to low-frequency mo

dV l5
pd l

N
, ~12!

whered l is the number of low-frequency modes which a
taken to correspond one-to-one with high-frequency mod
d l 5dk. Using this and combining Eqs.~10!–~12! we obtain
the fractional number of couplings

dk

N
5

2

p

bE

N
. ~13!

We estimate the rate of energy transfer from a hig
frequency mode to the low-frequency modes by taking
derivative ofH with respect to angle. Using the same proc
dure as above, we obtain

dEj

dt
'V j S b

ND dkEjEl , ~14!

whereV j52, as above, anddk/N is given by Eq.~13!. With
these substitutions we rearrange and integrate to obtai
equipartition, whereEj5E/N,

lnS p/2

bE/ND52bS 2

p

bE

N D E
0

Teq
El~ t !dt. ~15!

As in previous work, we make the simplest assumption t
El(t)'(t/T)(E/N) to perform the integration, yielding

Teq5
p

2 S N

bED 2

lnS p/2

bE/ND , ~16!

FIG. 12. Time evolution of the energy densities of the mod
j 5121 andj 5122 for b50.1, E550, g5120, andN5128 oscil-
lators. Two different beat oscillations between the modes can
observed, with respective beat frequencies equal toVB

(1)'0.60 and
VB

(2)'5.3.
-

-
es

s,

-
e
-

at

t

which has the dominant (bE/N)22 scaling as found numeri
cally. The many approximations are not critical to the sc
ing, but, of course, change the coefficient, which is certai
no better than an order of magnitude calculation. In fact
we compare the magnitude ofTeq. from Eq. ~16! with the
numerical value from Fig. 10, atE550, we find thatTeq.
from Eq. ~16! is a factor of approximately 50 smaller. W
might expect a significant underestimate ofTeq because we
are not explicitly taking into account the effect of the CB.
fact, for half of the total equipartition time in Fig. 5 th
dominant nonlinear processes are holding the CB toget
For low-frequency-mode initial conditions, in which there
no breather formation, the theoretical and numerical tim
are well within an order of magnitude@19#. The above con-
siderations predict that at low initial energy there will be
modes with sufficient energy to produce energy transfe
rates that are nonexponentially slow. From Eq.~13! we find
that with N5128 andE550, dk'3 such that reducing the
energy by greater than a factor of 3 should result in la
increases inTeq. We can see this happening in Fig. 1
where already atE526, Teq is departing from theTeq
}E22 scaling.

IV. CONCLUSIONS AND FINAL REMARKS

We have shown that the formation of chaotic breath
~CB’s!, from high-frequency mode initial conditions in th
FPU-b coupled oscillator system, is generic, not depend
on the specific initial conditions. However, the CB formatio
is successively weakened as the initial conditions con
less of the alternating oscillator breather symmetry. The
sic process is the formation of a few CB’s from the mod
initially containing most of the energy, followed by a coale
cence into a single dominant CB, which then decays o
time by energy transfer to low-frequency modes which
not contain the breather symmetry. We have found that
dominant scalings areTb}(E/N)21 for CB formation, and
Teq}(E/N)22 for CB decay toward equipartition, wher
E/N is the energy density. Because of the different scalin
at highE/N, Tb.Teq and the CB will not form.

We have observed, numerically, that a Fourier decom
sition into modes shows that there are beat oscillati
among the modes, similar to those found for low-frequen
mode initial conditions. The transfer of energy from low
high frequencies was shown to be due to stochasticity, a
ing in the low-frequency beats, driving energy transfer, no
linearly, to difference frequencies between high-frequen
modes@9#. Postulating that this mechanism also operates
transfer energy from high frequencies to low frequencies,
have shown that it can explain the energy density scaling
Teq}(E/N)22. It further predicts the breakdown of the sca
ing at low energy density, as found numerically.

The analysis also suggests how the formation of a
inhibits the energy equipartition process, particularly
lower energies. The concentration of the energy in oscilla
space naturally spreads the energy in mode space. If the
ergy per mode falls significantly below that required for t
strong Arnold diffusion, then the transfer of energy fro
high-frequency to low-frequency modes becomes expon
tially small as exp(2dVl /VB). Fluctuations in mode ampli-
tude probably assist in the energy transfer process.
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PRE 61 2477ENERGY EQUIPARTITION STARTING FROM HIGH- . . .
There does not presently exist a theory which predicts
formation time of the CB. There are some similarities b
tween the coalescence of CB’s and the coalescence of o
nonlinear structures, such as vortices. The open ques
concerning this intermediate time scale are well worth f
ther investigation.

The additional understanding that has recently b
gained for CB formation and destruction from hig
frequency-mode initial conditions, combined with the pre
ous understanding of the approach to equipartition from lo
frequency-mode initial conditions, now presents a fai
complete picture of the energy transfer phenomenon.
v

-

e
-
er
ns
-

n

-
-

e

results can probably be applied to other coupled oscilla
chains, such as that arising in the approach to equiparti
from high and low-frequency modes in the discretized si
Gordon equation, which previously have been only partia
understood.
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